Differentiation Question 402

Question: If $ y=\sin px $ and $ y _{n} $ is the nth derivative of y, then $ | \begin{matrix} y & y_1 & y_2 \\ y_3 & y_4 & y_5 \\ y_6 & y_7 & y_8 \\ \end{matrix} | $ is equal to

[AMU 2002]

Options:

A) 1

B) 0

C) - 1

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ D=| \begin{matrix} \sin px & p\cos px & -p^{2}\sin px \\ -p^{3}\cos px & p^{4}\sin px & p^{5}\cos px \\ -p^{6}\sin px & -p^{7}\cos px & p^{8}\sin px \\ \end{matrix} | $

$ =p^{9}| \begin{matrix} \sin px & p\cos px & -p^{2}\sin px \\ -\cos px & p\sin px & p^{2}\cos px \\ -\sin px & -p\cos px & p^{2}\sin px \\ \end{matrix} | $

$ =-p^{9}| \begin{matrix} \sin px & p\cos px & -p^{2}\sin px \\ \cos px & p\sin px & p^{2}\cos px \\ \sin px & p\cos px & -p^{2}\sin px \\ \end{matrix} |=0. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें