Differentiation Question 404

Question: If $ y=a^{x}.{b^{2x-1}} $ , then $ \frac{d^{2}y}{dx^{2}} $ is

[Kerala (Engg.) 2005]

Options:

A) $ y^{2}.\log ab^{2} $

B) $ y.\log ab^{2} $

C) $ y^{2} $

D) $ y.{{(\log a^{2}b)}^{2}} $

E) $ y.{{(\log ab^{2})}^{2}} $

Show Answer

Answer:

Correct Answer: E

Solution:

$ y=a^{x}{b^{2x-1}} $

$ \frac{dy}{dx}=a^{x}{b^{2x-1}}\log a+2a^{x}{b^{2x-1}}\log b $

= $ a^{x}{b^{2x-1}}(\log a+2\log b) $

$ \frac{d^{2}y}{dx^{2}}=a^{x}{b^{2x-1}}{{(\log a+2\log b)}^{2}} $

$ =a^{x}{b^{2x-1}}{{(\log ab^{2})}^{2}} $

$ =y{{(\log ab^{2})}^{2}} $ .