Differentiation Question 413

Question: If $ y={\log _{\cos x}}\sin x $ , then $ \frac{dy}{dx} $ is equal to

Options:

A) $ \frac{\cot x\log \cos x+\tan x\log \sin x}{{{(\log \cos x)}^{2}}} $

B) $ \frac{\tan x\log \cos x+\cot x\log \sin x}{{{(\log \cos x)}^{2}}} $

C) $ \frac{\cot x\log \cos x+\tan x\log \sin x}{{{(\log \sin x)}^{2}}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

We have $ y={\log _{\cos x}}\sin x=\frac{\log \sin x}{\log \cos x} $

$ \therefore \frac{dy}{dx}=\frac{\cot x.\log \cos x+(\log \sin x)\tan x}{{{(\log \cos x)}^{2}}} $ .