Differentiation Question 415

Question: If $ x=\frac{2t}{1+t^{2}},y=\frac{1-t^{2}}{1+t^{2}}, $ then $ \frac{dy}{dx} $ equals

[RPET 1999]

Options:

A) $ \frac{2t}{t^{2}+1} $

B) $ \frac{2t}{t^{2}-1} $

C) $ \frac{2t}{1-t^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ x=\frac{2t}{1+t^{2}},y=\frac{1-t^{2}}{1+t^{2}} $

Put $ t=\tan \theta $

$ x=\frac{2\tan \theta }{1+{{\tan }^{2}}\theta }=\sin 2\theta $ , $ y=\frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }=\cos 2\theta $

$ \frac{dy}{dx}=\frac{dy/d\theta }{dx/d\theta }=\frac{-2\sin 2\theta }{2\cos 2\theta } $

= $ -\tan 2\theta $ = $ \frac{-2\tan \theta }{1-{{\tan }^{2}}\theta } $ = $ \frac{-2t}{1-t^{2}} $ = $ \frac{2t}{t^{2}-1} $ .