Differentiation Question 417

Question: If $ y={{\sin }^{-1}}\frac{\sqrt{(1+x)}+\sqrt{(1-x)}}{2} $ , then $ \frac{dy}{dx}= $

Options:

A) $ \frac{1}{\sqrt{(1-x^{2})}} $

B) $ -\frac{1}{\sqrt{(1-x^{2})}} $

C) $ -\frac{1}{2\sqrt{(1-x^{2})}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Put $ x=\cos \theta $

$ 1+\cos \theta =2{{\cos }^{2}}( \frac{\theta }{2} ),\ \ 1-\cos \theta =2{{\sin }^{2}}( \frac{\theta }{2} ) $

$ \therefore y={{\sin }^{-1}}[ \frac{1}{\sqrt{2}}{ \cos ( \frac{\theta }{2} )+\sin ( \frac{\theta }{2} ) } ] $

$ ={{\sin }^{-1}}\sin ( \frac{\theta }{2}+\frac{\pi }{4} )=\frac{\theta }{2}+\frac{\pi }{4} $

Therefore $ y=\frac{1}{2}{{\cos }^{-1}}x+\frac{\pi }{4}\Rightarrow \frac{dy}{dx}=\frac{-1}{2\sqrt{1-x^{2}}} $ .