Differentiation Question 418

Question: If $ \cos x=\frac{1}{\sqrt{1+t^{2}}} $ and $ \sin y=\frac{t}{\sqrt{1+t^{2}}} $ , then $ \frac{dy}{dx}= $

[MP PET 1994]

Options:

A) -1

B) $ \frac{1-t}{1+t^{2}} $

C) $ \frac{1}{1+t^{2}} $

D) 1

Show Answer

Answer:

Correct Answer: D

Solution:

Obviously $ x={{\cos }^{-1}}\frac{1}{\sqrt{1+t^{2}}} $ and $ y={{\sin }^{-1}}\frac{t}{\sqrt{1+t^{2}}} $

Therefore $ \frac{dx}{dt}=-\frac{1}{\sqrt{\frac{t^{2}}{1+t^{2}}}}.\frac{(-1)}{2{{(1+t^{2})}^{3/2}}}2t=\frac{1}{1+t^{2}} $

and $ \frac{dy}{dt}=\sqrt{1+t^{2}}.\frac{1}{{{(\sqrt{1+t^{2}})}^{3/2}}}=\frac{1}{1+t^{2}} $

Hence $ \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=1 $ .