Differentiation Question 419

Question: If $ x=a(\cos \theta +\theta \sin \theta ) $ , $ y=a(\sin \theta -\theta \cos \theta ), $ then $ \frac{dy}{dx}= $

[DCE 1999]

Options:

A) $ \cos \theta $

B) $ \tan \theta $

C) $ \sec \theta $

D) cosecq

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{dy}{dx}=\frac{dy/d\theta }{dx/d\theta } $ = $ \frac{a[\cos \theta -\theta (-\sin \theta )-\cos \theta ]}{a[-\sin \theta +\theta \cos \theta +\sin \theta ]} $

= $ \frac{\theta \sin \theta }{\theta \cos \theta }=\tan \theta $ .