Differentiation Question 421

Question: $ \frac{d}{dx}[{{\sin }^{n}}x\cos nx]= $

Options:

A) $ n{{\sin }^{n-1}}x\cos (n+1)x $

B) $ n{{\sin }^{n-1}}x\cos nx $

C) $ n{{\sin }^{n-1}}x\cos (n-1)x $

D) $ n{{\sin }^{n-1}}x\sin (n+1)x $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{d}{dx}[{{\sin }^{n}}x\cos nx]=n{{\sin }^{n-1}}x\cos x\cos nx-n\sin nx{{\sin }^{n}}x $

$ =n{{\sin }^{n-1}}x[\cos x\cos nx-\sin nx\sin x]=n{{\sin }^{n-1}}x\cos (n+1)x $ .