Differentiation Question 422

Question: If $ x=a{{\cos }^{4}}\theta ,y=a{{\sin }^{4}}\theta , $ then $ \frac{dy}{dx} $ , at $ \theta =\frac{3\pi }{4} $ , is

[Kerala (Engg.) 2002]

Options:

A) -1

B) 1

C) $ -a^{2} $

D) $ a^{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ y=a{{\sin }^{4}}\theta $

Therefore $ \frac{dy}{d\theta }=4a{{\sin }^{3}}\theta \cos \theta $

and $ x=a{{\cos }^{4}}\theta $

Therefore $ \frac{dx}{d\theta }=-4a{{\cos }^{3}}\theta \sin \theta $

\ $ \frac{dy}{dx}=\frac{dy/d\theta }{dx/d\theta }=\frac{-{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }=-{{\tan }^{2}}\theta $

\ $ {{( \frac{dy}{dx} )} _{\theta =\frac{3\pi }{4}}}=-{{\tan }^{2}}( \frac{3\pi }{4} )=-1 $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index