Differentiation Question 424

Question: If $ x=a( t-\frac{1}{t} ),y=a $

$ ( t+\frac{1}{t} ) $ then $ \frac{dy}{dx}= $

[Karnataka CET 2004]

Options:

A) $ \frac{y}{x} $

B) $ \frac{-y}{x} $

C) $ \frac{x}{y} $

D) $ \frac{-x}{y} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ x=a( t-\frac{1}{t} ) $ ….(i) and $ y=a( t+\frac{1}{t} ) $ …..(ii) Squaring (i) and (ii), then subtracting we get, $ x^{2}-y^{2}=a^{2}(-4) $ or $ y^{2}-x^{2}=4a^{2} $

Differentiating both sides w.r.t. x, $ 2y\frac{dy}{dx}-2x=0 $

Therefore $ \frac{dy}{dx}=\frac{x}{y} $ .