Differentiation Question 425

Question: If $ x=\sin t\cos 2t $ and $ y=\cos t\sin 2t $ , then at $ t=\frac{\pi }{4}, $ the value of $ \frac{dy}{dx} $ is equal to

[Pb. CET 2000]

Options:

A) -2

B) 2

C) $ \frac{1}{2} $

D) $ -\frac{1}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ x=\sin t\cos 2t $ …..(i) and $ y=\cos t\sin 2t $ …..(ii) Differentiate (i) w.r.t. t, we get $ \frac{dx}{dt}=\cos t.\cos 2t-2\sin t\sin 2t $

…..(iii) Again, differentiate (ii), we get $ \frac{dy}{dt}=2\cos t\cos 2t-\sin t\sin 2t $

…..(iv) \ Dividing equation (iv) by (iii), we get $ \frac{dy}{dx}=\frac{2\cos t\cos 2t-\sin t\sin 2t}{\cos t\cos 2t-2\sin t\sin 2t} $

At $ t=\frac{\pi }{4},\frac{dy}{dx}=\frac{1}{2} $ .