Differentiation Question 425

Question: If $ x=\sin t\cos 2t $ and $ y=\cos t\sin 2t $ , then at $ t=\frac{\pi }{4}, $ the value of $ \frac{dy}{dx} $ is equal to

[Pb. CET 2000]

Options:

A) -2

B) 2

C) $ \frac{1}{2} $

D) $ -\frac{1}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ x=\sin t\cos 2t $ …..(i) and $ y=\cos t\sin 2t $ …..(ii) Differentiate (i) w.r.t. t, we get $ \frac{dx}{dt}=\cos t.\cos 2t-2\sin t\sin 2t $

…..(iii) Again, differentiate (ii), we get $ \frac{dy}{dt}=2\cos t\cos 2t-\sin t\sin 2t $

…..(iv) \ Dividing equation (iv) by (iii), we get $ \frac{dy}{dx}=\frac{2\cos t\cos 2t-\sin t\sin 2t}{\cos t\cos 2t-2\sin t\sin 2t} $

At $ t=\frac{\pi }{4},\frac{dy}{dx}=\frac{1}{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें