Differentiation Question 428

Question: If $ y=x^{x} $ , then $ \frac{dy}{dx}= $

[AISSE 1984; DSSE 1982; MNR 1979; SCRA 1996; RPET 1996; Kerala (Engg.) 2002]

Options:

A) $ x^{x}\log ex $

B) $ x^{x}( 1+\frac{1}{x} ) $

C) $ (1+\log x) $

D) $ x^{x}\log x $

Show Answer

Answer:

Correct Answer: A

Solution:

$ y=x^{x} $

Taking $ \log $ on both sides,

Therefore $ \log y=x\log x $

Differentiating with respect to x, we get

Therefore $ \frac{1}{y}\frac{dy}{dx}=1+\log x $ ;
$ \therefore \frac{dy}{dx}=x^{x}(1+\log x)=x^{x}\log ex $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें