Differentiation Question 430

Question: The first derivative of the function $ [ {{\cos }^{-1}}( \sin \sqrt{\frac{1+x}{2}} )+x^{x} ] $ with respect to x at x = 1 is

[MP PET 1998]

Options:

A) $ \frac{3}{4} $

B) 0

C) $ \frac{1}{2} $

D) $ -\frac{1}{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)={{\cos }^{-1}}[ \cos ( \frac{\pi }{2}-\sqrt{\frac{1+x}{2}} ) ]+x^{x} $

$ f(x)=\frac{\pi }{2}-\sqrt{\frac{1+x}{2}}+x^{x} $

$ \therefore f’(x)=-\frac{1}{\sqrt{2}}.\frac{1}{2\sqrt{1+x}}+x^{x}(1+\log x) $

$ f’(1)=-\frac{1}{4}+1=\frac{3}{4} $ .