Differentiation Question 432

Question: If $ y=\sqrt{\frac{1+x}{1-x}}, $ then $ \frac{dy}{dx}= $

[AISSE 1981; RPET 1995]

Options:

A) $ \frac{2}{{{(1+x)}^{1/2}}{{(1-x)}^{3/2}}} $

B) $ \frac{1}{{{(1+x)}^{1/2}}{{(1-x)}^{3/2}}} $

C) $ \frac{1}{2{{(1+x)}^{1/2}}{{(1-x)}^{3/2}}} $

D) $ \frac{1}{{{(1+x)}^{3/2}}{{(1-x)}^{1/2}}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y=\sqrt{\frac{1+x}{1-x}} $

Therefore $ y=\sqrt{\frac{(1+x)(1+x)}{(1-x)(1+x)}}=\sqrt{\frac{{{(1+x)}^{2}}}{1-x^{2}}} $

Differentiating with respect to x, we get $ \frac{dy}{dx}=\frac{{{(1-x)}^{1/2}}\frac{d}{dx}{{(1+x)}^{1/2}}-{{(1+x)}^{1/2}}\frac{d}{dx}{{(1-x)}^{1/2}}}{(1-x)} $

$ =\frac{(1-x)+(1+x)}{2{{(1-x)}^{3/2}}{{(1+x)}^{1/2}}} $

$ x=\frac{2}{3}y $ . Trick : $ \log y=\frac{1}{2}\log (1+x)-\frac{1}{2}\log (1-x) $

Therefore $ \frac{1}{y}\frac{dy}{dx}=\frac{1}{2(1+x)}+\frac{1}{2(1-x)} $

Therefore $ \frac{dy}{dx}=\frac{1}{(1+x)(1-x)}\times \sqrt{\frac{1+x}{1-x}} $

$ =\frac{1}{{{(1+x)}^{1/2}}{{(1-x)}^{3/2}}} $ .