Differentiation Question 434

Question: If $ x^{y}={e^{x-y}} $ , then $ \frac{dy}{dx}= $

[MP PET 1987, 2004; MNR 1984; Roorkee 1954; BIT Ranchi 1991; RPET 2000]

Options:

A) $ \log x.{{[\log (ex)]}^{-2}} $

B) $ \log x.{{[\log (ex)]}^{2}} $

C) $ \log x.{{(\log x)}^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ x^{y}={e^{x-y}} $

Therefore $ y\log x=x-y $

Therefore $ y=\frac{x}{1+\log x} $

Therefore $ \frac{dy}{dx}=\log x{{(1+\log x)}^{-2}}=\log x{{[\log ex]}^{-2}} $ .