Differentiation Question 436
Question: $ (x-y){e^{x/(x-y)}}=k $ then
Options:
A) $ (y-2x)\frac{dy}{dx}+3x-2y=0 $
B) $ y\frac{dy}{dx}+x-2y=0 $
C) $ a( y\frac{dy}{dx}+x-2y )=0 $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
Taking $ \log $ , we get $ \log (x-y)+\frac{x}{x-y}=\log k $
Therefore $ (x-y)-(x-y)\frac{dy}{dx}+(x-y)-x+\frac{dy}{dx}=0 $
Therefore $ y\frac{dy}{dx}+x=2y $ .