Differentiation Question 436

Question: $ (x-y){e^{x/(x-y)}}=k $ then

Options:

A) $ (y-2x)\frac{dy}{dx}+3x-2y=0 $

B) $ y\frac{dy}{dx}+x-2y=0 $

C) $ a( y\frac{dy}{dx}+x-2y )=0 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Taking $ \log $ , we get $ \log (x-y)+\frac{x}{x-y}=\log k $

Therefore $ (x-y)-(x-y)\frac{dy}{dx}+(x-y)-x+\frac{dy}{dx}=0 $

Therefore $ y\frac{dy}{dx}+x=2y $ .