Differentiation Question 442

Question: If $ x=\frac{1-t^{2}}{1+t^{2}} $ and $ y=\frac{2t}{1+t^{2}} $ , then $ \frac{dy}{dx}= $

[Karnataka CET 2000; Pb. CET 2002]

Options:

A) $ \frac{-y}{x} $

B) $ \frac{y}{x} $

C) $ \frac{-x}{y} $

D) $ \frac{x}{y} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ x=\frac{1-t^{2}}{1+t^{2}} $ and $ y=\frac{2t}{1+t^{2}} $

Put $ t=\tan \theta $ in both the equations, we get $ x=\frac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }=\cos 2\theta $ and $ y=\frac{2\tan \theta }{1+{{\tan }^{2}}\theta }=\sin 2\theta $ . Differentiating both the equations, we get $ \frac{dx}{d\theta }=-2\sin 2\theta $ and $ \frac{dy}{d\theta }=2\cos 2\theta . $

Therefore $ \frac{dy}{dx}=-\frac{\cos 2\theta }{\sin 2\theta }=-\frac{x}{y} $ .