Differentiation Question 446

Question: If $ y={x^{\sqrt{x}}}, $ then $ \frac{dy}{dx} $ =

Options:

A) $ {x^{\sqrt{x}}}\frac{2+\log x}{2\sqrt{x}} $

B) $ {x^{\sqrt{x}}}\frac{2+\log x}{\sqrt{x}} $

C) $ \frac{2+\log x}{2\sqrt{x}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ y={x^{\sqrt{x}}}\Rightarrow {\log _{e}}y=\sqrt{x}\log x $

Therefore $ \frac{1}{y}\frac{dy}{dx}=\sqrt{x}\frac{1}{x}+\frac{1}{2\sqrt{x}}\log x $ or $ \frac{dy}{dx}={x^{\sqrt{x}}}[ \frac{2+{\log _{e}}x}{2\sqrt{x}} ] $