Differentiation Question 447

Question: If $ x^{p}y^{q}={{(x+y)}^{p+q}}, $ then $ \frac{dy}{dx}= $

[RPET 1999; UPSEAT 2001]

Options:

A) $ \frac{y}{x} $

B) $ -\frac{y}{x} $

C) $ \frac{x}{y} $

D) $ -\frac{x}{y} $

Show Answer

Answer:

Correct Answer: A

Solution:

Taking $ \log $ both sides, $ p\log x+q\log y=(p+q)\log (x+y) $

Therefore $ \frac{p}{x}+\frac{q}{y}\frac{dy}{dx}=\frac{p+q}{x+y}( 1+\frac{dy}{dx} )\Rightarrow \frac{dy}{dx}=\frac{y}{x} $ .