Differentiation Question 448

Question: If $ y={{(\sin x)}^{{{(\sin x)}^{(\sin x)……\infty }}}} $ , then $ \frac{dy}{dx}= $

Options:

A) $ \frac{y^{2}\cot x}{1-y\log \sin x} $

B) $ \frac{y^{2}\cot x}{1+y\log \sin x} $

C) $ \frac{y\cot x}{1-y\log \sin x} $

D) $ \frac{y\cot x}{1+y\log \sin x} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ y={{(\sin x)}^{{{(\sin x)}^{(\sin x)…..\infty }}}} $

Therefore $ y={{(\sin x)}^{y}}\Rightarrow {\log _{e}}y=y\log \sin x $

Therefore $ \frac{1}{y}\frac{dy}{dx}=\frac{dy}{dx}[\log \sin x+y\cot x] $

$ \therefore \frac{dy}{dx}=\frac{y^{2}\cot x}{1-y\log \sin x} $ .