Differentiation Question 450

Question: If $ y={{(x^{x})}^{x}} $ , then $ \frac{dy}{dx} $ =

Options:

A) $ {{(x^{x})}^{x}}(1+2\log x) $

B) $ {{(x^{x})}^{x}}(1+\log x) $

C) $ x{{(x^{x})}^{x}}(1+2\log x) $

D) $ x{{(x^{x})}^{x}}(1+\log x) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ y={{(x^{x})}^{x}}\Rightarrow {\log _{e}}y=x{\log _{e}}{{(x)}^{x}} $ = $ x^{2}.{\log _{e}}x $

Therefore $ \frac{1}{y}\frac{dy}{dx} $ = $ x^{2}.\frac{1}{x}+2x.{\log _{e}}x $

$ \therefore \frac{dy}{dx}=x{{(x^{x})}^{x}}[1+2{\log _{e}}x] $ .