Differentiation Question 453

Question: If $ x=at^{2},y=2at $ , then $ \frac{d^{2}y}{dx^{2}}= $

[Karnataka CET 1993]

Options:

A) $ -\frac{1}{t^{2}} $

B) $ \frac{1}{2at^{3}} $

C) $ -\frac{1}{t^{3}} $

D) $ -\frac{1}{2at^{3}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{2a}{2at} $

Therefore $ \frac{dy}{dx}=\frac{1}{t}=\frac{2a}{y} $

Therefore $ y\frac{dy}{dx}=2a $

Therefore $ y\frac{d^{2}y}{dx^{2}}+{{( \frac{dy}{dx} )}^{2}}=0 $

$ \Rightarrow \frac{d^{2}y}{dx^{2}}=\frac{-{{(dy/dx)}^{2}}}{y}=-\frac{1}{2at^{3}} $ .