Differentiation Question 455

Question: If $ y={{( 1+\frac{1}{x} )}^{x}} $ , then $ \frac{dy}{dx}= $

[BIT Ranchi 1992]

Options:

A) $ {{( 1+\frac{1}{x} )}^{x}}[ \log ( 1+\frac{1}{x} )-\frac{1}{1+x} ] $

B) $ {{( 1+\frac{1}{x} )}^{x}}[ \log ( 1+\frac{1}{x} ) ] $

C) $ {{( x+\frac{1}{x} )}^{x}}[ \log (x-1)-\frac{x}{x+1} ] $

D) $ {{( 1+\frac{1}{x} )}^{x}}[ \log ( 1+\frac{1}{x} )+\frac{1}{1+x} ] $

Show Answer

Answer:

Correct Answer: A

Solution:

$ y={{( 1+\frac{1}{x} )}^{x}}\Rightarrow \log y=x\log ( 1+\frac{1}{x} ) $

$ \Rightarrow \frac{1}{y}\frac{dy}{dx}=\log ( 1+\frac{1}{x} )-\frac{1}{1+x} $

Therefore $ \frac{dy}{dx}={{( 1+\frac{1}{x} )}^{x}}[ \log ( 1+\frac{1}{x} )-\frac{1}{1+x} ] $ .