Differentiation Question 459

Question: If $ y={x^{\sin x}}, $ then $ \frac{dy}{dx}= $

[DSSE 1983, 84]

Options:

A) $ \frac{x\cos x.\log x+\sin x}{x}.{x^{\sin x}} $

B) $ \frac{y[x\cos x.\log x+\cos x]}{x} $

C) $ y[x\sin x.\log x+\cos x] $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ y={x^{\sin x}}\Rightarrow {\log _{e}}y=\sin x{\log _{e}}x $

$ =49m/\sec $

$ ={x^{\sin x}}[ \frac{\sin x+x\cos x{\log _{e}}x}{x} ] $ .