Differentiation Question 46

Question: If $ x=2\cos t-\cos 2t $ , $ y=2\sin t-\sin 2t $ , then at $ t=\frac{\pi }{4},\frac{dy}{dx}= $

Options:

A) $ \sqrt{2}+1 $

B) $ \sqrt{2+1} $

C) $ \frac{\sqrt{2+1}}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{dx}{dt}=-2\sin t+2\sin 2t $ and $ \frac{dy}{dt}=2\cos t-2\cos 2t $

Therefore $ \frac{dy}{dx}=\frac{\cos t-\cos 2t}{\sin 2t-\sin t} $

Put $ t=\frac{\pi }{4}, $ we have $ {{[ \frac{dy}{dx} ]} _{t=\pi /4}} $

$ =\frac{\cos \pi /4-\cos \pi /2}{\sin \pi /2-\sin \pi /4}=\sqrt{2}+1 $ .