Differentiation Question 460

Question: $ \frac{d}{dx}{{{(\sin x)}^{x}}} $ =

[DSSE 1985, 87; AISSE 1983]

Options:

A) $ [ \frac{x\cos x+\sin x\log \sin x}{\sin x} ] $

B) $ {{(\sin x)}^{x}}[ \frac{x\cos x+\sin x\log \sin x}{\sin x} ] $

C) $ {{(\sin x)}^{x}}[ \frac{x\sin x+\sin x\log \sin x}{\sin x} ] $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ y={{(\sin x)}^{x}}\Rightarrow {\log _{e}}y=x{\log _{e}}\sin x $

$ \Rightarrow \frac{dy}{dx}={{(\sin x)}^{x}}[x\cot x+{\log _{e}}\sin x] $

$ ={{(\sin x)}^{x}}[ \frac{x\cos x+\sin x\log \sin x}{\sin x} ] $ .