Differentiation Question 462

Question: $ \frac{d}{dx}{{{(\sin x)}^{\log x}}}= $

[DSSE 1984]

Options:

A) $ {{(\sin x)}^{\log x}}[ \frac{1}{x}\log \sin x+\cot x ] $

B) $ {{(\sin x)}^{\log x}}[ \frac{1}{x}\log \sin x+\cot x\log x ] $

C) $ {{(\sin x)}^{\log x}}[ \frac{1}{x}\log \sin x+\log x ] $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ y={{(\sin x)}^{\log x}}\Rightarrow {\log _{e}}y={\log _{e}}x{\log _{e}}\sin x $

Therefore $ \frac{dy}{dx}={{(\sin x)}^{{\log _{e}}x}}=[ \frac{1}{x}{\log _{e}}\sin x+\cot x{\log _{e}}x ] $ .