Differentiation Question 466

Question: $ \underset{x\to \infty }{\mathop{\lim }},\frac{n^{p}{{\sin }^{2}}(n!)}{n+1},0<p<1 $ is equal to

Options:

A) 0

B) $ \infty $

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Given limit can be written as $ \underset{n\to 0}{\mathop{\lim }},\frac{{{\sin }^{2}}(n!)}{{n^{1-p}}(1+1/n)}(0<p<1) $ $ =\frac{Somerealnumberin[0,1]}{\infty }=0 $ $ (\because 1-p>0) $