Differentiation Question 467

Question: Let $ f(x)=x{{(-1)}^{[1/x]}},x\ne 0, $ where [x] denotes the greatest integer less than or equal to x then, $ \underset{x\to 0}{\mathop{\lim }},f(x)= $

Options:

A) Does not exist

B) 2

C) 0

D) -1

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \because [1/x]=integer $
$ \therefore {{(-1)}^{[1/x]}}=1or-1 $ $ \underset{x\to 0}{\mathop{\lim }},x{{(-1)}^{[1/x]}}=\underset{h\to 0}{\mathop{\lim }},(h)(1or-1)=0 $ $ =\underset{h\to 0}{\mathop{\lim }},(-h),(1or-1)=0 $