Differentiation Question 470

Question: The value of $ \underset{x\to 0}{\mathop{\lim }},\frac{27^{x}-9^{x}-3^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}} $ is

Options:

A) $ 4\sqrt{2}{{(log3)}^{2}} $

B) $ 8\sqrt{2}{{(log3)}^{2}} $

C) $ 2\sqrt{2}{{(log3)}^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \underset{x\to 0}{\mathop{\lim }},\frac{27^{x}-9^{x}-3^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}} $ $ =\underset{x\to 0}{\mathop{\lim }},\frac{9^{x}{{.3}^{x}}-9^{x}-3^{x}+1}{\sqrt{2}-\sqrt{2}\cos \frac{x}{2}} $ $ =\underset{x\to 0}{\mathop{\lim }},( \frac{9^{x}-1}{x} ).( \frac{3^{x}-1}{x} ).\frac{1}{\sqrt{2}}.x^{2}.\frac{1}{2{{\sin }^{2}}\frac{x}{4}} $ $ =\underset{x\to 0}{\mathop{\lim }},( \frac{9^{x}-1}{x} ).( \frac{3^{x}-1}{x} ).\frac{1}{\sqrt{2}}( \frac{x^{2}/16}{{{\sin }^{2}}x/4} )8 $ $ =\frac{8}{\sqrt{2}}(log9)(log3)=8\sqrt{2}{{(log3)}^{2}}. $