Differentiation Question 498

Question: If $ z_{r}=\cos \frac{r\alpha }{n^{2}}+i\sin \frac{r\alpha }{n^{2}}, $ where $ r=1,2,3,…n, $ then $ \underset{x\to \infty }{\mathop{\lim }},z_1z_2z_3…z_{n} $ is equal to

Options:

A) $ \cos \alpha +i\sin \alpha $

B) $ \cos (\alpha /2)-isin(\alpha /2) $

C) $ {e^{i\alpha /2}} $

D) $ \sqrt[3]{{e^{i\alpha }}} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ z_{r}=\cos \frac{ra}{n^{2}}+i\sin \frac{ra}{n^{2}}; $ $ z_1=\cos \frac{\alpha }{n^{2}}+i\sin \frac{\alpha }{n^{2}}; $ $ z_2=\cos \frac{2\alpha }{n^{2}}+i\sin \frac{2\alpha }{n^{2}};…, $ $ z_{n}=\cos \frac{n\alpha }{n^{2}}+i\sin \frac{n\alpha }{n^{2}} $ Consider $ \underset{n\to \infty }{\mathop{\lim }},(z_1z_2z_3…z_{n}) $ $ =\underset{n\to \infty }{\mathop{\lim }},[ \cos { \frac{\alpha }{n^{2}}(1+2+3+…+n) }+i\sin { \frac{\alpha }{n^{2}}(1+2+3+…+n) } ] $ $ =\underset{n\to \infty }{\mathop{\lim }},[ \cos \frac{an(n+1)}{2n^{2}}+i\sin \frac{an(n+1)}{2n^{2}} ] $ $ =\underset{x\to \infty }{\mathop{\lim }},\frac{\cos a( 1+1/n )}{2}+\frac{i\sin a( 1+1/n )}{2} $ $ =\cos \frac{\alpha }{2}+i\sin \frac{\alpha }{2}={e^{\frac{ia}{2}}} $