Differentiation Question 503

Question: What is $ \underset{n\to \infty }{\mathop{\lim }},\frac{1+2+3+…+n}{1^{2}+2^{2}+3^{2}+…n^{2}} $ equal to?

Options:

A) 5

B) 2

C) 1

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ \underset{n\to \infty }{\mathop{\lim }},\frac{1+2+3+…+n}{1^{2}+2^{2}+3^{3}+…+n^{2}} $ $ =\underset{n\to \infty }{\mathop{\lim }},\frac{\frac{n(n+1)}{2}}{\frac{n(n+1)(2n+1)}{6}} $
$ \therefore \underset{n\to \infty }{\mathop{\lim }},\frac{3}{2n+1}=0 $ Note: $ 1+2+3+…+n=\frac{n(n+1)}{2} $ $ 1^{2}+2^{2}+3^{2}+…+n^{2}=\frac{n(n+1)(2n+1)}{6} $