Differentiation Question 51

Question: Let y be an implicit function of x defined by $ x^{2x}-2x^{x}\cot y-1=0 $ . Then y’(1) equals

Options:

A) -1

B) 1

C) $ log2 $

D) $ -log2 $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ x^{2x}-2x^{x}\cot y-1=0 $ (i) Now at x=1, $ 1-2\cot y-1=0\Rightarrow \cot y=0\Rightarrow y=\frac{\pi }{2} $

Now differentiating (i) w.r.t,x, we get $ 2x^{2x}(1+logx)-2[ x^{x}(-cosec^{2}y)\frac{dy}{dx}+\cot yx^{x}(1+logx) ]=0 $ Now at $ (1,\pi /2) $ , $ 2(1+log1)-2[ 1(-1){{( \frac{dy}{dx} )} _{1,\pi /2}}+0 ]=0 $
$ \Rightarrow 2+2{{( \frac{dy}{dx} )} _{(1,\pi /2)}}=0 $

$ \Rightarrow {{( \frac{dy}{dx} )} _{(1,\pi /2)}}=-1 $