Differentiation Question 57

Question: If $ \sin y=x\sin (a+y), $ then $ \frac{dy}{dx}= $

[Karnataka CET 2000; UPSEAT 2001; Pb. CET 2001; Kerala (Engg.) 2005]

Options:

A) $ \frac{{{\sin }^{2}}(a+y)}{\sin (a+2y)} $

B) $ \frac{{{\sin }^{2}}(a+y)}{\sin (a+2y)} $

C) $ \frac{{{\sin }^{2}}(a+y)}{\sin a} $

D) $ \frac{{{\sin }^{2}}(a+y)}{\cos a} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \sin y=x\sin (a+y) $

Therefore $ x=\frac{\sin y}{\sin (a+y)} $

Therefore $ 1=\frac{\cos y.\frac{dy}{dx}.\sin (a+y)-\sin y\cos (a+y)\frac{dy}{dx}}{{{\sin }^{2}}(a+y)} $

$ =\frac{\frac{dy}{dx}.\sin (a+y-y)}{{{\sin }^{2}}(a+y)}\Rightarrow \frac{dy}{dx}=\frac{{{\sin }^{2}}(a+y)}{\sin a} $ .