Differentiation Question 58

Question: If $ y={{\cot }^{-1}}[ \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} ] $ , then $ \frac{dy}{dx}= $

Options:

A) $ \frac{1}{2} $

B) $ \frac{2}{3} $

C) 3

D) 1

Show Answer

Answer:

Correct Answer: A

Solution:

$ y={{\cot }^{-1}}[ \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} ] $

$ ={{\cot }^{-1}}[ \frac{2+2\cos x}{2\sin x} ]={{\cot }^{-1}}[ \frac{1+\cos x}{\sin x} ] $

$ ={{\cot }^{-1}}[ \cot \frac{x}{2} ]=\frac{x}{2} $

$ \therefore \frac{dy}{dx}=\frac{1}{2} $ .