Differentiation Question 60

Question: If $ y=\log \frac{1+\sqrt{x}}{1-\sqrt{x}}, $ then $ \frac{dy}{dx}= $

Options:

A) $ \frac{\sqrt{x}}{1-x} $

B) $ \frac{1}{\sqrt{x}(1-x)} $

C) $ \frac{\sqrt{x}}{1+x} $

D) $ \frac{1}{\sqrt{x}(1+x)} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ t=\frac{5x+1}{10x^{2}-3}, $

Differentiating w.r.t. x of y, we get $ \frac{dy}{dx}=\frac{1-\sqrt{x}}{1+\sqrt{x}}[ \frac{(1-\sqrt{x})\frac{1}{2\sqrt{x}}+(1+\sqrt{x})\frac{1}{2\sqrt{x}}}{{{(1-\sqrt{x})}^{2}}} ] $

$ =\frac{1}{2(1-x)\sqrt{x}}[1-\sqrt{x}+1+\sqrt{x}]=\frac{1}{\sqrt{x}(1-x)} $ .