Differentiation Question 64

Question: $ \frac{d}{dx}{e^{x+3\log x}}= $

Options:

A) $ e^{x}.x^{2}(x+3) $

B) $ e^{x}.x(x+3) $

C) $ e^{x}+\frac{3}{x} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ {e^{x+3\log x}}=e^{x}.{e^{3\log x}}=e^{x}.{e^{\log x^{3}}}=e^{x}.x^{3} $

Therefore $ y=e^{x}.x^{3}\Rightarrow \frac{dy}{dx}=e^{x}.3x^{2}+x^{3}.e^{x}=e^{x}x^{2}(3+x) $