Differentiation Question 64
Question: $ \frac{d}{dx}{e^{x+3\log x}}= $
Options:
A) $ e^{x}.x^{2}(x+3) $
B) $ e^{x}.x(x+3) $
C) $ e^{x}+\frac{3}{x} $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
$ {e^{x+3\log x}}=e^{x}.{e^{3\log x}}=e^{x}.{e^{\log x^{3}}}=e^{x}.x^{3} $
Therefore $ y=e^{x}.x^{3}\Rightarrow \frac{dy}{dx}=e^{x}.3x^{2}+x^{3}.e^{x}=e^{x}x^{2}(3+x) $