Differentiation Question 66

Question: The differential coefficient of $ {{\tan }^{-1}}( \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} ) $ is

[MP PET 2003]

Options:

A) $ \sqrt{1-x^{2}} $

B) $ \frac{1}{\sqrt{1-x^{2}}} $

C) $ \frac{1}{2\sqrt{1-x^{2}}} $

D) x

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ y={{\tan }^{-1}}( \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} ) $

Put $ x=\cos 2\theta \Rightarrow \theta =\frac{1}{2}{{\cos }^{-1}}x $

$ y={{\tan }^{-1}}( \frac{\sqrt{1+\cos 2\theta }-\sqrt{1-\cos 2\theta }}{\sqrt{1+\cos 2\theta }+\sqrt{1-\cos 2\theta }} ) $

$ y={{\tan }^{-1}}( \frac{\sqrt{2{{\cos }^{2}}\theta }-\sqrt{2{{\sin }^{2}}\theta }}{\sqrt{2{{\cos }^{2}}\theta }+\sqrt{2{{\sin }^{2}}\theta }} ) $

$ y={{\tan }^{-1}}( \frac{\cos \theta -\sin \theta }{\cos \theta +\sin \theta } )={{\tan }^{-1}}( \frac{1-\tan \theta }{1+\tan \theta } ) $

$ y={{\tan }^{-1}}(\tan (\pi /4-\theta )) $

Therefore $ y=\frac{\pi }{4}-\theta $

$ y=\frac{\pi }{4}-\frac{1}{2}{{\cos }^{-1}}x $

Therefore $ \frac{dy}{dx}=\frac{1}{2}( \frac{1}{\sqrt{1-x^{2}}} ) $ .