Differentiation Question 68
Question: $ \frac{d}{dx}(x^{2}e^{x}\sin x)= $
Options:
A) $ xe^{x}(2\sin x+x\sin x+x\cos x) $
B) $ xe^{x}(2\sin x+x\sin x-\cos x) $
C) $ xe^{x}(2\sin x+x\sin x+\cos x) $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
$ \frac{d}{dx}( x^{2}e^{x}\sin x )=x^{2}\frac{d}{dx}( e^{x}\sin x ) $
$ +e^{x}\sin x\frac{d}{dx}(x^{2}) $
$ =xe^{x}(2\sin x+x\sin x+x\cos x) $ .
 BETA
  BETA 
             
             
           
           
           
          