Differentiation Question 72

Question: If $ z={{\tan }^{-1}}( \frac{x}{y} ) $ , then $ z _{x}:z _{y}= $

Options:

A) $ y:x $

B) $ x:y $

C) $ -y:x $

D) $ -x:y $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{\partial z}{\partial x}=\frac{1}{1+\frac{x^{2}}{y^{2}}}.\frac{1}{y}=\frac{y}{x^{2}+y^{2}} $

$ \frac{\partial z}{\partial y}=\frac{1}{1+\frac{x^{2}}{y^{2}}}.( -\frac{x}{y^{2}} )=-\frac{x}{x^{2}+y^{2}} $

$ \therefore $ $ \frac{\partial z}{\partial x}:\frac{\partial z}{\partial y}=y:-x $ i.e., $ z _{x}:z _{y}=-y:x $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index