Differentiation Question 73

Question: $ \frac{d}{dx}\log \tan ( \frac{\pi }{4}+\frac{x}{2} )= $

Options:

A) $ \cos ecx $

B) $ -\cos ecx $

C) $ \sec x $

D) $ -\sec x $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{d}{dx}\log \tan ( \frac{\pi }{4}+\frac{x}{2} )=\frac{1}{\tan ( \frac{\pi }{4}+\frac{x}{2} )}{{\sec }^{2}}( \frac{\pi }{4}+\frac{x}{2} ).\frac{1}{2} $

$ =\frac{1}{2}.\frac{1}{\sin ( \frac{\pi }{4}+\frac{x}{2} )\cos ( \frac{\pi }{4}+\frac{x}{2} )}=\frac{1}{\sin ( \frac{\pi }{2}+x )}=\frac{1}{\cos x}=\sec x $ .