Differentiation Question 74

Question: If $ u=\frac{x+y}{x-y} $ , then $ \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}= $

[EAMCET 1991]

Options:

A) $ \frac{1}{x-y} $

B) $ \frac{2}{x-y} $

C) $ \frac{1}{{{(x-y)}^{2}}} $

D) $ \frac{2}{{{(x-y)}^{2}}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ u=\frac{x+y}{x-y} $

$ \therefore \frac{\partial u}{\partial x}=\frac{(x-y).1-(x+y).1}{{{(x-y)}^{2}}} $

$ =\frac{-2y}{{{(x-y)}^{2}}} $

$ \frac{\partial u}{\partial y}=\frac{(x-y).1-(x+y)(-1)}{{{(x-y)}^{2}}} $ = $ \frac{2x}{{{(x-y)}^{2}}} $

$ \therefore $ $ \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\frac{2(x-y)}{{{(x-y)}^{2}}}=\frac{2}{x-y} $ .