Differentiation Question 75

Question: If $ u=\log (x^{2}+y^{2}), $ then $ \frac{{{\partial }^{2}}u}{\partial x^{2}}+\frac{{{\partial }^{2}}u}{\partial y^{2}}= $

[EAMCET 1994]

Options:

A) $ \frac{1}{x^{2}+y^{2}} $

B) 0

C) $ \frac{x^{2}-y^{2}}{{{(x^{2}+y^{2})}^{2}}} $

D) $ \frac{y^{2}-x^{2}}{{{(x^{2}+y^{2})}^{2}}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ u=\log (x^{2}+y^{2})\therefore \frac{\partial u}{\partial x}=\frac{1}{x^{2}+y^{2}}.2x $

$ \frac{{{\partial }^{2}}u}{\partial x^{2}}=\frac{(x^{2}+y^{2}).2-2x.2x}{{{(x^{2}+y^{2})}^{2}}} $

$ =\frac{2(y^{2}-x^{2})}{{{(x^{2}+y^{2})}^{2}}} $ - $ \frac{\partial u}{\partial y}=\frac{1}{x^{2}+y^{2}}.2y $

$ \therefore \frac{{{\partial }^{2}}u}{\partial y^{2}}=\frac{(x^{2}+y^{2}).2-2y.2y}{{{(x^{2}+y^{2})}^{2}}}=\frac{2(x^{2}-y^{2})}{{{(x^{2}+y^{2})}^{2}}} $

$ \therefore $ $ \frac{{{\partial }^{2}}u}{\partial x^{2}}+\frac{{{\partial }^{2}}u}{\partial y^{2}}=0 $ .