Differentiation Question 8

Question: If $ y={{\sqrt{x}}^{{{\sqrt{x}}^{\sqrt{x}….\infty }}}} $ , then $ \frac{dy}{dx}= $

Options:

A) $ \frac{y^{2}}{2x-2y\log x} $

B) $ \frac{y^{2}}{2x+\log x} $

C) $ \frac{y^{2}}{2x+2y\log x} $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

$ y={{\sqrt{x}}^{{{\sqrt{x}}^{\sqrt{x}…..\infty }}}}\Rightarrow y={{(\sqrt{x})}^{y}} $

Therefore $ \log y=y\log {x^{1/2}}=\frac{1}{2}y\log x $

Therefore $ \frac{1}{y}\frac{dy}{dx}=\frac{1}{2}( \log x\frac{dy}{dx}+\frac{y}{x} )\Rightarrow \frac{dy}{dx}( \frac{2}{y}-\log x )=\frac{y}{x} $

Therefore $ \frac{dy}{dx}=\frac{y.y}{x(2-y\log x)}=\frac{y^{2}}{x(2-y\log x)} $ .