Differentiation Question 80

Question: If $ u={{\tan }^{-1}}\frac{y}{x} $ , then by Euler’s Theorem the value of x $ \frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}= $

[Tamilnadu (Engg.) 1993]

Options:

A) $ \tan u $

B) $ \sin u $

C) $ 0 $

D) $ \cos 2u $

Show Answer

Answer:

Correct Answer: C

Solution:

$ u={{\tan }^{-1}}\frac{y}{x}=x^{0}.{{\tan }^{-1}}\frac{y}{x} $

Clearly u is homogeneous in x, y of degree 0.
$ \therefore $ By Euler’s theorem $ x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial z}=0.u=0 $ .