Differentiation Question 81

Question: If $ u={{\tan }^{-1}}( \frac{x^{3}+y^{3}}{x-y} ) $ , then $ x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}= $

[EAMCET 1999]

Options:

A) $ \sin 2u $

B) $ \cos 2u $

C) $ \tan 2u $

D) $ \sec 2u $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \tan u $ is homogeneous in x, y of degree 2.
$ \therefore $ $ x\frac{\partial }{\partial x}(\tan u)+y\frac{\partial }{\partial y}(\tan u)=2(\tan u) $

$ \therefore $ $ x{{\sec }^{2}}u\frac{\partial u}{\partial x}+y{{\sec }^{2}}u\frac{\partial u}{\partial y}=2\tan u $

Therefore $ x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=2\frac{\tan u}{{{\sec }^{2}}u} $ = $ 2\sin u\cos u=\sin 2u $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें