Differentiation Question 88

Question: If $ y={{\sin }^{-1}}\frac{2x}{1+x^{2}}, $ where $ 0<x<1 $ and $ 0<y<\frac{\pi }{2}, $ then $ \frac{dy}{dx}= $

Options:

A) $ \frac{2}{1+x^{2}} $

B) $ \frac{2x}{1+x^{2}} $

C) $ \frac{-2}{1+x^{2}} $

D) $ \frac{-x}{1+x^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ y={{\sin }^{-1}}\frac{2x}{1+x^{2}} $

Put $ x=\tan \theta $

$ x $

$ y=2\theta =2{{\tan }^{-1}}x $

$ (\because \theta ={{\tan }^{-1}}x) $

Differentiating with respect to x, we get $ \frac{dy}{dx}=\frac{2}{1+x^{2}} $

$ ( \text{Since }0<x<1\text{ and }0<y<\frac{\pi }{2} ) $ .