Differentiation Question 90

Question: If $ \tan (x+y)+\tan (x-y)=1, $ then $ \frac{dy}{dx}= $

[DSSE 1979]

Options:

A) $ \frac{{{\sec }^{2}}(x+y)+{{\sec }^{2}}(x-y)}{{{\sec }^{2}}(x+y)-{{\sec }^{2}}(x-y)} $

B) $ \frac{{{\sec }^{2}}(x+y)+{{\sec }^{2}}(x-y)}{{{\sec }^{2}}(x-y)-{{\sec }^{2}}(x+y)} $

C) $ \frac{{{\sec }^{2}}(x+y)-{{\sec }^{2}}(x-y)}{{{\sec }^{2}}(x+y)+{{\sec }^{2}}(x-y)} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \tan (x+y)+\tan (x-y)=1 $

Differentiating w.r.t. x of y, we get

Therefore $ {{\sec }^{2}}(x+y)( 1+\frac{dy}{dx} )+{{\sec }^{2}}(x-y)( 1-\frac{dy}{dx} )=0 $

Therefore $ \frac{dy}{dx}=\frac{{{\sec }^{2}}(x+y)+{{\sec }^{2}}(x-y)}{{{\sec }^{2}}(x-y)-{{\sec }^{2}}(x+y)} $ .