Differentiation Question 93

Question: If $ z^{2}=\frac{{x^{1/2}}+{y^{1/2}}}{{x^{1/3}}+{y^{1/3}}} $ then $ x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}= $

[EAMCET 1999]

Options:

A) $ \frac{z}{6} $

B) $ \frac{z}{3} $

C) $ \frac{z}{2} $

D) $ \frac{z}{12} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ z^{2} $ is homogeneous in x, y of degree $ \frac{1}{6} $

$ \therefore $ $ x\frac{\partial }{\partial x}(z^{2})+y\frac{\partial }{\partial y}(z^{2})=\frac{1}{6}(z^{2}) $

Therefore $ 2xz\frac{\partial z}{\partial x}+2yz\frac{\partial z}{\partial y}=\frac{1}{6}z^{2} $

Therefore $ x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=\frac{1}{12}z $ .