Differentiation Question 94

Question: If $ u={{\tan }^{-1}}(x+y), $ then $ x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}= $

[EAMCET 1996]

Options:

A) $ \sin 2u $

B) $ \frac{1}{2}\sin 2u $

C) $ 2\tan u $

D) $ {{\sec }^{2}}u $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \tan u=x+y=x.( 1+\frac{y}{x} ) $

$ \therefore $ $ \tan u $ is homogeneous in $ x,y $ of order 1.
$ \therefore $ $ x\frac{\partial }{\partial x}(\tan u)+y\frac{\partial }{\partial y}(\tan u)=\tan u $

$ \therefore $ $ x{{\sec }^{2}}u\frac{\partial u}{\partial x}+y{{\sec }^{2}}u\frac{\partial u}{\partial y}=\tan u $

$ \therefore $ $ x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=\tan u.{{\cos }^{2}}u=\sin u\cos u $ = $ \frac{1}{2}\sin 2u $ .